4,227 research outputs found

    Noise Limited Computational Speed

    Full text link
    In modern transistor based logic gates, the impact of noise on computation has become increasingly relevant since the voltage scaling strategy, aimed at decreasing the dissipated power, has increased the probability of error due to the reduced switching threshold voltages. In this paper we discuss the role of noise in a two state model that mimic the dynamics of standard logic gates and show that the presence of the noise sets a fundamental limit to the computing speed. An optimal idle time interval that minimizes the error probability, is derived

    Quantum Fluctuations of a Coulomb Potential as a Source of Flicker Noise

    Full text link
    The power spectrum of quantum fluctuations of the electromagnetic field produced by an elementary particle is determined. It is found that in a wide range of practically important frequencies the power spectrum of fluctuations exhibits an inverse frequency dependence. The magnitude of fluctuations produced by a conducting sample is shown to have a Gaussian distribution around its mean value, and its dependence on the sample geometry is determined. In particular, it is demonstrated that for geometrically similar samples the power spectrum is inversely proportional to the sample volume. It is argued also that the magnitude of fluctuations induced by external electric field is proportional to the field strength squared. A comparison with experimental data on flicker noise measurements in continuous metal films is made.Comment: 11 pages, substantially corrected and extende

    Hypotheses, evidence and relationships: The HypER approach for representing scientific knowledge claims

    Get PDF
    Biological knowledge is increasingly represented as a collection of (entity-relationship-entity) triplets. These are queried, mined, appended to papers, and published. However, this representation ignores the argumentation contained within a paper and the relationships between hypotheses, claims and evidence put forth in the article. In this paper, we propose an alternate view of the research article as a network of 'hypotheses and evidence'. Our knowledge representation focuses on scientific discourse as a rhetorical activity, which leads to a different direction in the development of tools and processes for modeling this discourse. We propose to extract knowledge from the article to allow the construction of a system where a specific scientific claim is connected, through trails of meaningful relationships, to experimental evidence. We discuss some current efforts and future plans in this area

    An experimental demonstration of blind ocean acoustic tomography

    Get PDF
    Despite the advantages clearly demonstrated by ocean acoustic tomography OAT when compared to other ocean monitoring techniques, it suffers from several technical-related drawbacks. One is the requirement for rather expensive equipment to be maintained and operated at several locations in order to obtain sufficient source–receiver propagation paths to cover a given ocean volume. This paper presents the preliminary feasibility tests of a concept that uses ships of opportunity as sound sources for OAT. The approach adopted in this paper views the tomographic problem as a global inversion that includes determining both the emitted signal and the environmental parameters, which is a similar problem to that seen in blind channel identification and was therefore termed blind ocean acoustic tomography BOAT . BOAT was tested on a data set acquired in October 2000 in a shallow-water area off the west coast of Portugal, including both active and passive ship noise data. Successful results show that BOAT is able to estimate detailed water column temperature profiles coherent with independent measurements in intervals where the uncontrolled source signal ship noise presents a sufficient bandwidth and signal-to-noise ratio, which clearly define the limitations of the presented method.FCT; CN

    Critical Ultrasonics Near the Superfluid Transition : Finite Size Effects

    Full text link
    The suppression of order parameter fluctuations at the boundaries causes the ultrasonic attenuation near the superfluid transition to be lowered below the bulk value. We calculate explicitly the first deviation from the bulk value for temperatures above the lambda point. This deviation is significantly larger than for static quantities like the thermodynamic specific heat or other transport properties like the thermal conductivity. This makes ultrasonics a very effective probe for finite size effects.Comment: 10 pages (LaTeX), 1 figure (PostScript

    Evolving Spatially Aggregated Features from Satellite Imagery for Regional Modeling

    Full text link
    Satellite imagery and remote sensing provide explanatory variables at relatively high resolutions for modeling geospatial phenomena, yet regional summaries are often desirable for analysis and actionable insight. In this paper, we propose a novel method of inducing spatial aggregations as a component of the machine learning process, yielding regional model features whose construction is driven by model prediction performance rather than prior assumptions. Our results demonstrate that Genetic Programming is particularly well suited to this type of feature construction because it can automatically synthesize appropriate aggregations, as well as better incorporate them into predictive models compared to other regression methods we tested. In our experiments we consider a specific problem instance and real-world dataset relevant to predicting snow properties in high-mountain Asia

    Using XML and XSLT for flexible elicitation of mental-health risk knowledge

    Get PDF
    Current tools for assessing risks associated with mental-health problems require assessors to make high-level judgements based on clinical experience. This paper describes how new technologies can enhance qualitative research methods to identify lower-level cues underlying these judgements, which can be collected by people without a specialist mental-health background. Methods and evolving results: Content analysis of interviews with 46 multidisciplinary mental-health experts exposed the cues and their interrelationships, which were represented by a mind map using software that stores maps as XML. All 46 mind maps were integrated into a single XML knowledge structure and analysed by a Lisp program to generate quantitative information about the numbers of experts associated with each part of it. The knowledge was refined by the experts, using software developed in Flash to record their collective views within the XML itself. These views specified how the XML should be transformed by XSLT, a technology for rendering XML, which resulted in a validated hierarchical knowledge structure associating patient cues with risks. Conclusions: Changing knowledge elicitation requirements were accommodated by flexible transformations of XML data using XSLT, which also facilitated generation of multiple data-gathering tools suiting different assessment circumstances and levels of mental-health knowledge

    Evaluation of specific heat for superfluid helium between 0 - 2.1 K based on nonlinear theory

    Get PDF
    The specific heat of liquid helium was calculated theoretically in the Landau theory. The results deviate from experimental data in the temperature region of 1.3 - 2.1 K. Many theorists subsequently improved the results of the Landau theory by applying temperature dependence of the elementary excitation energy. As well known, many-body system has a total energy of Galilean covariant form. Therefore, the total energy of liquid helium has a nonlinear form for the number distribution function. The function form can be determined using the excitation energy at zero temperature and the latent heat per helium atom at zero temperature. The nonlinear form produces new temperature dependence for the excitation energy from Bose condensate. We evaluate the specific heat using iteration method. The calculation results of the second iteration show good agreement with the experimental data in the temperature region of 0 - 2.1 K, where we have only used the elementary excitation energy at 1.1 K.Comment: 6 pages, 3 figures, submitted to Journal of Physics: Conference Serie
    corecore